Dynamics of infection and fungicide resistance in CLS field trials

Eric Branch, NDSU / UMN Extension

Minn-Dak Farmers Cooperative Production Seminar January 29rd, 2025

Cercospora Leaf Spot (CLS)

The most economically important foliar disease of sugarbeet in Minnesota

Symptoms:

Brown or tan spots, gray centers
 Smaller lesions than other diseases

Pseudostromata form in center of lesion

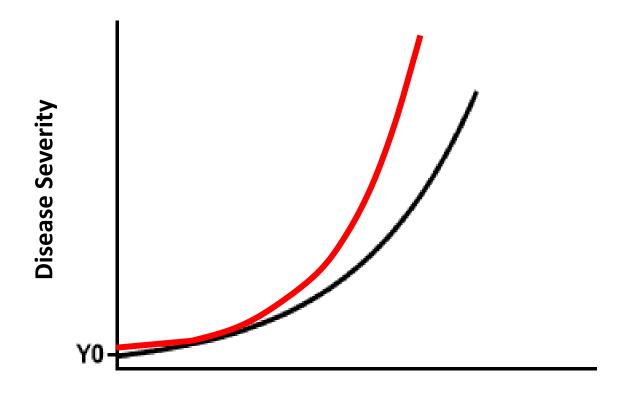
 Leaves become brown and die as lesions grow together/multiply

Photo: O. Neher

Cercospora Leaf Spot (CLS)

Environmental risk factors:

- High relative humidity
- Leaf wetness (dew or rain)
- Row closure promotes a humid canopy and wet leaves
- 80°F daytime, 60°F night temperatures


CLS field trial, September 2024

Cercospora biology affects management

Polycyclic disease cycle

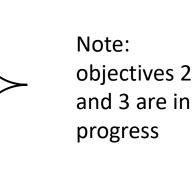
• Each CLS lesion produces hundreds of spores

 If just one additional lesion forms, there is exponential growth

Time

The Goal:

Reduce CLS disease progression


Maintain healthy sugarbeet plant season-long

Disease Severity

Time

CLS Field Trial Objectives

- Assess different fungicide program start dates and spray intervals to control CLS and improve yield and RSA
- Evaluate the relationship between latent *C. beticola* infections and June or July fungicide program start dates.
- 3. Investigate changes in resistance profiles of *C. beticola* populations following fungicide applications

Methods: Field Trials

Replicated small-plot field trials

- One CR+ and one non-CR+ variety used
- 10 treatments (per variety)
- Plots were 6 rows, 30 feet long with rows 2-5 treated
- 4 replications

Repeated at two locations

- Kragnes, MN
- Foxhome, MN

July 8th, 2024, Foxhome

Foxhome trial background

Planting Date: April 23rd

Harvest: September 25th

Environment:

Month	Rainfall (inches)	Average Temperature (max/min, °F)
April (23 rd -30 th)	2.9	58 / 39
May	5.5	69 / 46
June	4.4	76 / 54
July	5.0	82 / 61
August	2.9	78 / 57
September (1 st -25 th)	0.1	79 / 53

Methods: Fungicide Applications

All treatments received fungicides in the same sequence

- Only spray timing (program start date and intervals) differed between treatment
- 0 to 6 applications per treatment

Tractor-mounted sprayer, 4 rows

Trials were inoculated July 10th

Ground-leaf Cercospora inoculum was applied (mixed with talc at a 2:1 ratio)

Approximately 3 grams applied per row

• 18 grams per plot (6 rows)

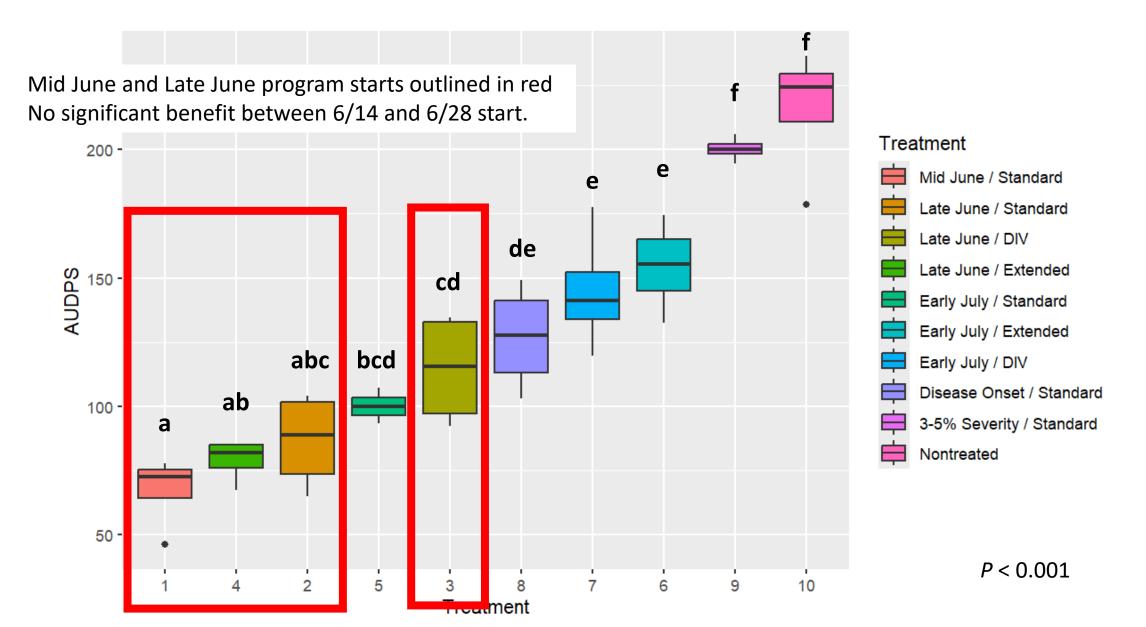
Applied by hand

Fungicide Sequence

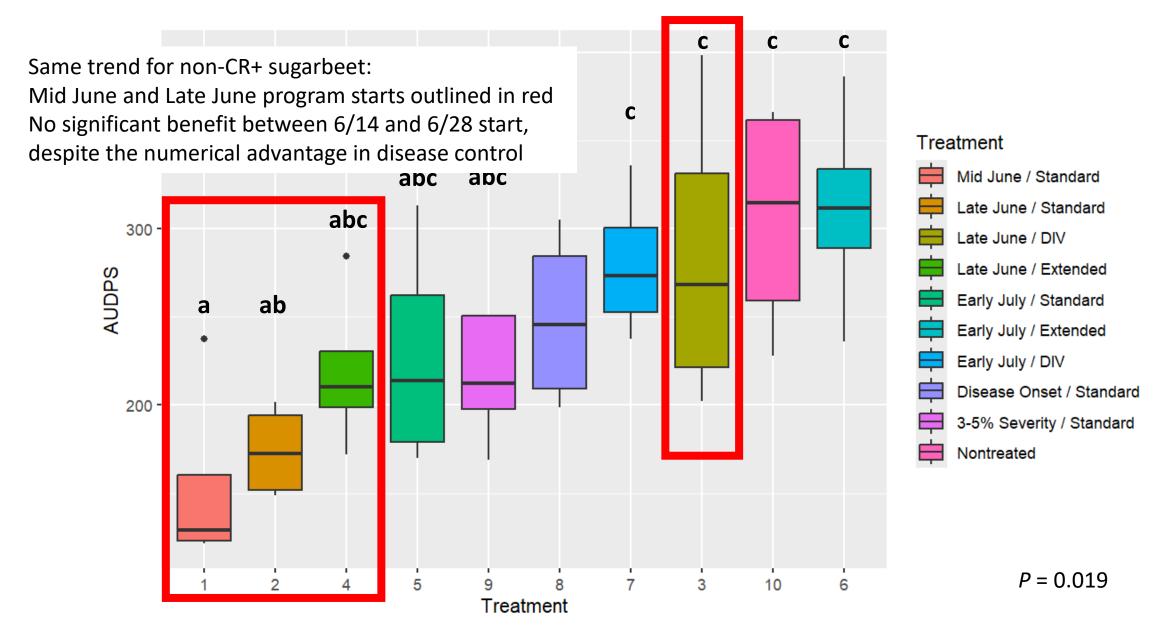
Application	Mode of action	Product @ Rate
1 st	EBDC	Koverall @ 2 lbs/A
2 nd	DMI (tetraconazole) + EBDC	Minerva @ 13 fl oz/A + Koverall @ 2 lbs/A
3 rd	Tin + EBDC	Super Tin @ 8 fl oz/A + Koverall @ 2 lbs/A
4 th	DMI (difenoconazole, Propiconazole) + EBDC	Inspire XT @ 7 fl oz/A + Koverall @ 2 lbs/A
5 th	Tin + EBDC	Super Tin @ 8 fl oz/A + Koverall @ 2 lbs/A
6 th	Copper + EBDC	Badge SC @ 2 pt/A + Koverall @ 2 lbs/A

Fungicide Timing

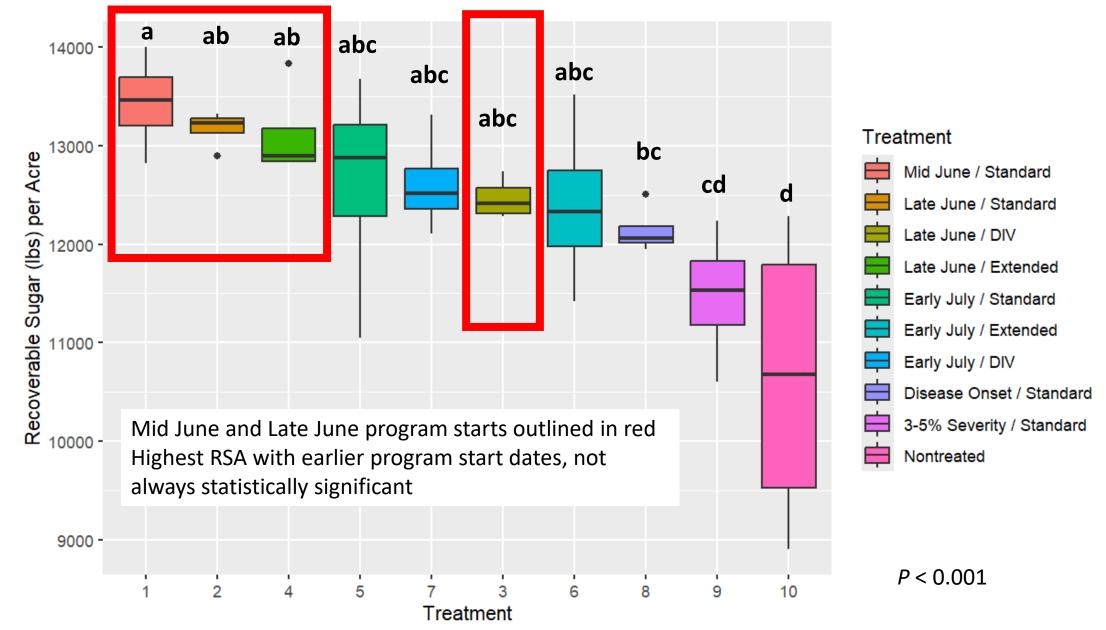
Treatment	Program start date		Interval	Number of applications
1	Mid June	6/14	10-14 days	6
2	Late June	6/28	10-14 days	5
3	Late June	6/28	based on DIV	4
4	Late June	6/28	10-14, then 21-28 days	4
5	Early July	7/12	10-14 days	4
6	Early July	7/12	10-14, then 21-28 days	3
7	Early July	7/12	Based on DIV	3
8	Disease onset	7/29	10-14 days	3
9	3-5% CLS severity	8/12	10-14 days	2
10	Nontreated check	-	-	0

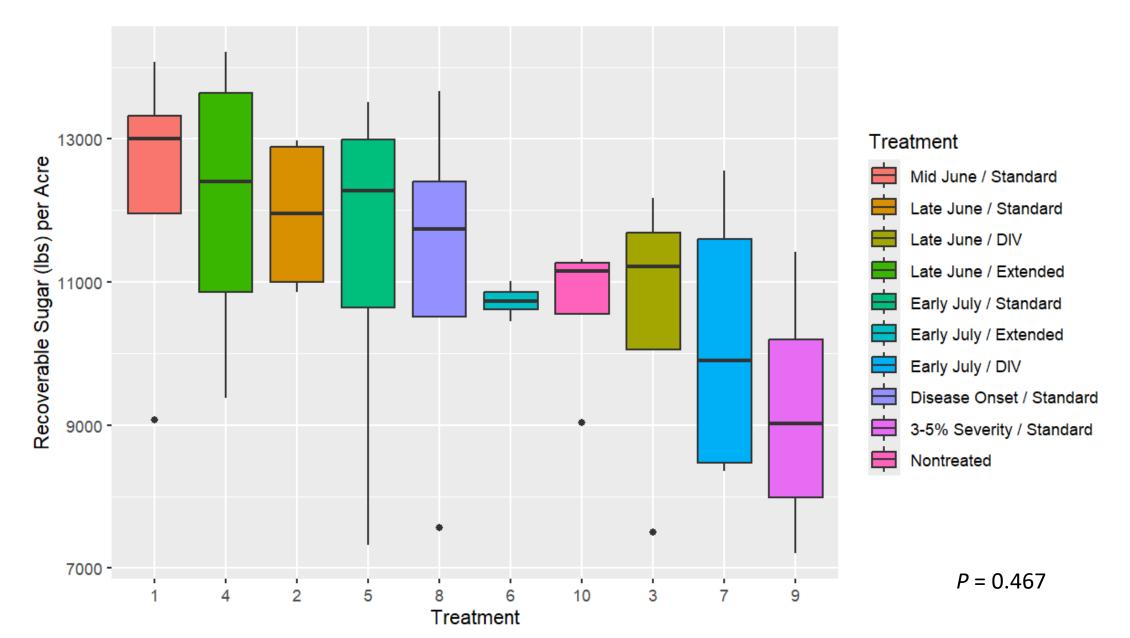

Fungicide Timing

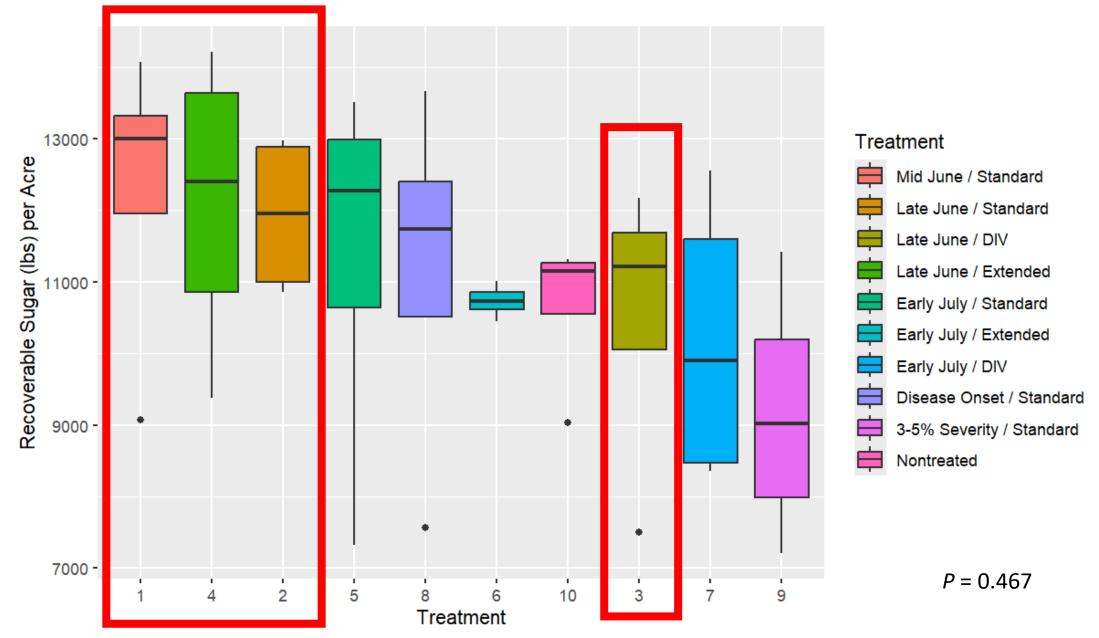
Treatment	Program start date		Interval	Number of applications
1	Mid June	6/14	10-14 days	6
2	Late June	6/28	Pre-row closure	
3	Late June	6/28		
4	Late June	6/28	10-14, then 21-28 days	4
5	Early July	7/12		
6	Early July	7/12	Image: 1 Row closure	
7	Early July	7/12	ased on DIV	3
8	Disease onset	7/29	10-14 days	3
9	3-5% CLS severity	8/12	10-14 days	2
10	Nontreated check	-	_	0

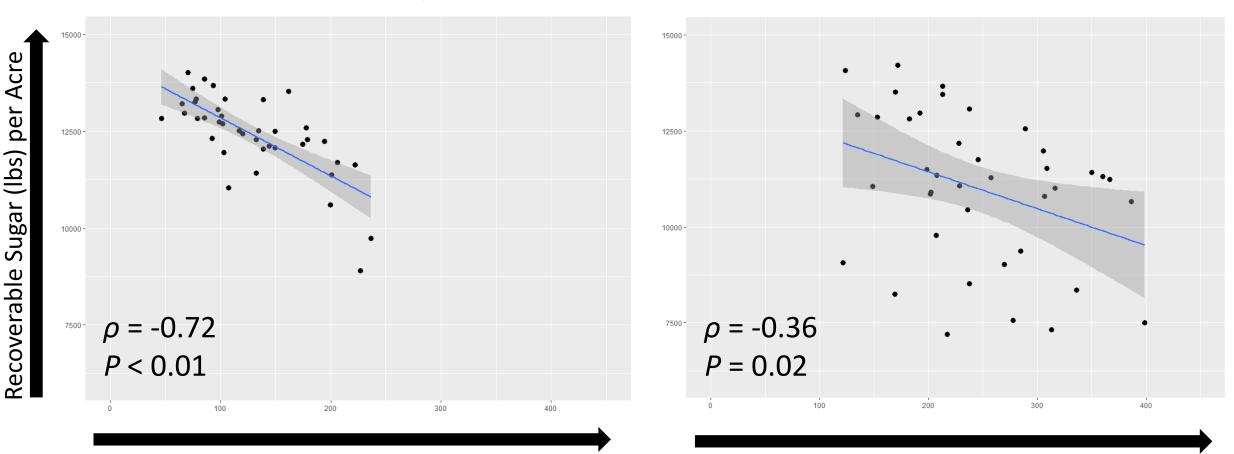

Fungicide Timing

Treatment		Program star	t date	Interval		Number of applications
1		Mid lune	6/14	10-14 days	1	6
2						5
3		10-14 days = " standard "			4	
4				ys	4	
5		10-14, then 21-28 days = " extended "			4	
6				ys	3	
7					3	
8						3
9	3-	5% CLS severity	8/12	10-14 days	J	2
10	N	ontreated check	-	-		0


CLS disease severity (AUDPS) in CR+ sugarbeet

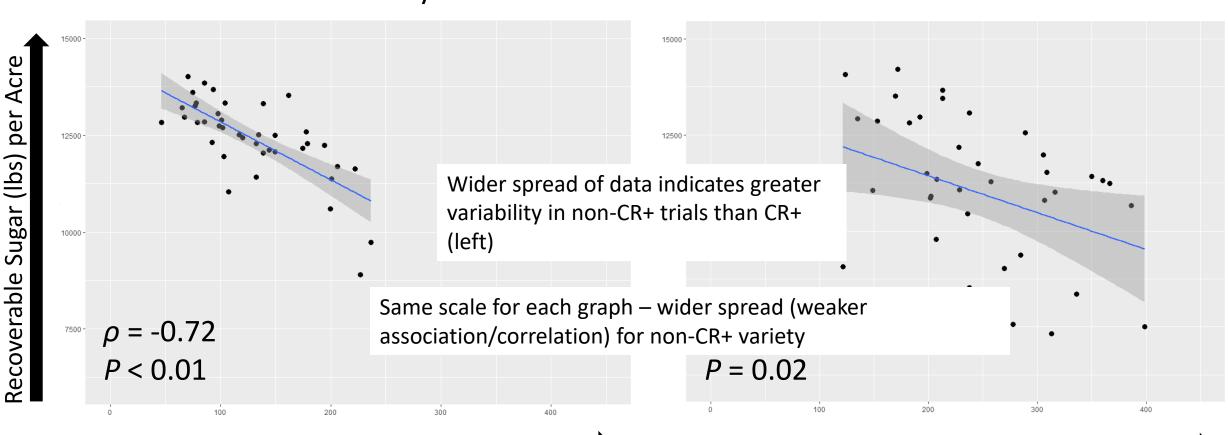

CLS disease severity (AUDPS) in non-CR+ sugarbeet


Recoverable sugar per acre in CR+ sugarbeet


Recoverable sugar per acre in non-CR+ sugarbeet

Recoverable sugar per acre in non-CR+ sugarbeet

Increased CLS severity was associated with lower RSA


CR+ Variety

Disease Severity (AUDPS)

Disease Severity (AUDPS)

Non-CR+ Variety

Increased CLS severity was associated with lower RSA

CR+ Variety

Non-CR+ Variety

Disease Severity (AUDPS)

Disease Severity (AUDPS)

CLS, Yield, and RSA (CR+ sugarbeet)

Program start date	CLS severity (AUDPS)	Yield (tons/A)	RSA (lbs)
Mid June	67 a	37.4 abc	13,439 a
Late June	86 ab	38.4 ab	13,171 ab
Late June	115 abc	36.1 abcd	12,464 abc
Late June	79 bcd	38.2 ab	13,118 ab
Early July	100 cd	37.3 abc	12,619 abc
Early July	155 de	38.5 a	12,399 abc
Early July	145 e	37.3 abc	12,614 abc
Disease onset	127 e	35.4 bcd	12,144 bc
3-5% CLS severity	200 f	34.7 cd	11,476 cd
Nontreated check	216 f	33.1 d	10,637 d
P =	< 0.001	< 0.001	< 0.001

CLS, Yield, and RSA (non-CR+ sugarbeet)

Program start date	CLS severity (AUDPS)	Yield (tons/A)	RSA (lbs)
Mid June	154 a	42.0	12,286
Late June	174 ab	40.4	11,934
Late June	284 abc	38.1	10,525
Late June	219 abc	42.3	12,097
Early July	227 abc	38.9	11,346
Early July	311 bc	38.8	10,730
Early July	280 c	34.6	10,178
Disease onset	249 с	39.1	11,176
3-5% CLS severity	235 с	33.8	9,164
Nontreated check	306 c	38.5	10,663
P =	0.02	NS	NS

Leaf sampling and fungicide resistance screening

- Leaf samples collected from rows 3 and 4 prior to each fungicide application
- All treatments were sampled in mid-June and again in September

Collaboration with Dr. Nathan Wyatt (USDA-ARS) to determine fungicide resistance

> ddPCR assay for Qol, benzimidazole, DMI resistance

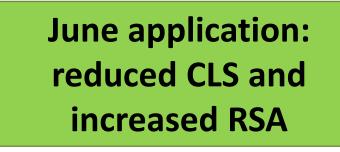
First CLS latent detection – Foxhome location

Earlier date highlighted in red

Treatment	Data / Intomial	First latent CLS detection date		
Treatment	Date / Interval	CR+	Non-CR+	
1	Mid June / Standard	June 25 th	June 14 th	
2	Late June / Standard	June 25 th	July 12 th	
3	Late June / DIV	June 14 th	July 12 th	
4	Late June / Extended	June 25 th	July 12 th	
5	Early July / Standard	June 25 th	July 12 th	
6	Early July / Extended	July 26 th	June 14 th	
7	Early July / DIV	June 25 th	July 12 th	
8	Disease onset / Standard	July 26 th	July 12 th	
9	3-5% CLS severity / Standard	July 12 th	July 12 th	
10	Nontreated check	July 12 th	July 12 th	

First CLS latent detection – Kragnes location

Earlier date highlighted in red


Treatment	Data / Intomial	First latent CLS detection date		
Treatment	Date / Interval	CR+	Non-CR+	
1	Mid June / Standard	July 8 th	July 8 th	
2	Late June / Standard	July 8 th	June 20 th	
3	Late June / DIV	June 20 th	August 1st	
4	Late June / Extended	July 8 th	August 13 th	
5	Early July / Standard	August 1st	August 1st	
6	Early July / Extended	August 1 st	August 1 st	
7	Early July / DIV	June 20 th	June 20 th	
8	Disease onset / Standard	July 8 th	June 20 th	
9	3-5% CLS severity / Standard	August 1st	August 13th	
10	Nontreated check	June 20th	June 20 th	

Conclusion/Next Steps

 Late June start to fungicide programs are beneficial

Unclear benefit to mid-June vs. late June

- Evaluate the relationship between latent *C. beticola* infections and June or July fungicide program start dates.
- Further analysis of fungicide resistance profiles of isolates

Acknowledgements

Sugarbeet Research and Education Board

NDSU Sugarbeet Extension Team

Andy Fuchs Peter Hakk

Wyatt Lab Team (USDA-ARS)

Dr. Nathan Wyatt Sophia Truscott

Industry support

Cooperating Growers

NDSU

EXTENSION

Questions?

Dr. Eric Branch

eric.branch@ndsu.edu

701-365-1016

EXTENSION

